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New Analytical Method for Solving Nonlinear
Fraction Partial Differentional Equations

E. Abdel Wally1, S. K. Elagan2, 3, E. Edfawy2, 4 and M. Sayed2, 5

Abstract— Similar to Kantorovich method for variations of calculus, a new method called the fractional series expansion is proposed to
solve nonlinear fractional differential equations. The solution is assumed to be an infinite series of separated functions of independent
variables. The solution procedure is elucidated by two examples. The fractional generalized coupled MKDV and KDV equation is used as
another example to show that its solution depends strongly upon its initial conditions, a special condition is given when no solution exists
for the discussed problem.

Index Terms— Riemann Liouville derivative, Caputo derivative, fractional generalized coupled MKDV and KDV equation, series solution.
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1  INTRODUCTION
HE seeds of fractional calculus were planted over 300
years ago, and now a forest of its applications in various
fields is formed, this is because that differential equations

involving derivatives of non-integer order can be adequate
models for various physical phenomena [1, 2] in especially
discontinuous media. Nobel Laureate Gerardus ‘t Hooft [3]
once remarked that discrete space–time is the most radical and
logical viewpoint of reality, and fractal theory and fractional
calculus are best candidates for description of phenomena in
discrete space–time, it is interesting to find that the fractional
order is equivalent to its fractional dimensions[4].
Recently some analytical methods were appeared in open lit-
erature for fractional calculus, among which the variational
iteration method (VIM) [5], and the homotopy perturbation
method [6],  the exp-function method[7-9], the fractional com-
plex transform[10], and local fractional integral transforms
including the Yang-Fourier transform and Yang-Laplace trans-
form[11] have been caught much attention. In our paper we
will suggest a novel method called the fractional series expan-
sion to solve fractional differential equations, using the Ca-
puto time fractional derivative operator, our new method is
simple but effective.

2 PRELIMINARIES AND NOTATIONS
Fractional differential equations have excited, in recent years,

a considerable interest both in mathematics and in applica-

tions. They were used in modeling of many physical and

chemical processes and engineering (see, e.g., [12-16]).

Here, we mention the basic definitions of the Caputo fraction-

al-order integration and differentiation, which are used in the

upcoming paper and play the most important role in the theo-

ry of differential and integral equation of fractional order. The

main advantages of Caputo approach are the initial conditions

for fractional differential equations with the Caputo deriva-

tives taking on the same form as for integer order differential

equations.  In this section, we give some basic. For more de-

tails for definitions and properties of the fractional calculus

theory which will be used further in this work see [1].

We shall introduce a modified fractional differential operator

D proposed by M. Caputo in his work on the theory of vis-

coelasticity [1].

Definition.  For m  to be the smallest integer that exceeds ,
the Caputo time fractional derivative operator of order 0
is defined as

0

1 , 0 1
1

x
f dx x f d

dx

3  NEW ANALYTICAL METHOD
We consider a fractional partial differential equation of

the form

LuuDt ,                                          (1)

T
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with initial condition

xfxu 0, ,                                     (2)

where L is a differential operator containing only derivatives

with respect to x . Hinted by the Kantorovich method in cal-

culus of variations, the solution can be assumed as multi-term

separated functions of independent variables t and x:

, ( )n n
n

u x t h t g x                                    (3)

for the case when is an integer.  Hereby )(thn and )(xgn

are unknown functions to be further determined later.

We assume that the solution can be expressed in the form

.,
0n

n
n xgttxu                            (4)

Substituting Eq. (4) into Eq. (1), by simple calculation, we have

xLgtxgt
n

n
n

n
n

n
n

n 0
1

0 1
11

          (5)

Comparing coefficients we obtain

xfxg0                                             (6)

and

.
11

1
1 xLg

n
nxg nn                         (7)

Therefore, we have

fL
n

g n
n 1

1
.                             (8)

and the following series solution

xfL
n

ttxu n

n

n

0 1
, .                               (9)

Formula (9) is true only when the operator L is linear. If L is

nonlinear one has to compare coefficients in the usual way.

4  EXAMPLES
Example 1. Consider  the  one  dimension  fraction  heat

conduction equation

0,t xxD u Au

with the initial condition

,0 sin .u x x

Where A is a constant and 0,0 1t .

By a simple calculation, we obtain

sinLf x A x , 2 2 sinL f x A x ,… .

Then

2
2

2
2

, ...
1 1 2

sin sin sin ...
1 1 2

t tu x t f x Lf x L f x

t tx A x A x

is some kind of approximate solution .

Example 2.  Consider the following fractional heat equation

2 0,t xxD u u u (10)

with the initial condition

20, xxu .                                   (11)

Assume the solution can be expressed in the form

0
,

n
n

n xuttxu .                         (12)

By a simple calculation, we obtain

,
0

2

n nji
ji

n uutu                                (13)

and

0

'' .
n

n
n

xx utu                                            (14)

Substituting Eqs. (12)-(14) into Eq. (10), and comparing coeffi-

cients,  we obtain

2
0 xxu                                      (15)

and

.
1

11 ''
1

nji
njin uuuu

n
n

                     (16)

Using this formula, we find sequentially that

2 '' 4
1 0 0

1 1
2 ,

1 1
u x u u x
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u x u u u x x
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u x u u u u

5 4 8

8 4
2

1 32 12 32 4
1 3

1 2
4 4

1

x x x x

x x
                (17)

We, therefore, obtain the following series solution

2
2 4 6 2

3
5 4 8

, 2 2 16
1 1 2

32 12 32 4
1 3

t tu x t x x x x

t x x x x

8 4
2

1 2
4 4 ...

1
x x                              (18)

The example can be also solved using the homotopy perturba-

tion method [6]. The homotopy equation can be constructed as

0)( 2uupuD xxt                                (19)

where p is a homotopy parameter. Assume that the solution

of Eq. (19) can be expressed as

2
2

10 uppuuu  .                               (20)

Following the homotopy perturbation method, we have

1
2 4

1
txu ,                                 (21)

Other components can be solved sequently, hereby we write

down only the first-order approximate solution, which is

2 4
0 1, 2 ...

1
tu x t u u x x          (22)

It  is  obvious  that  the  first  few  terms  agree  with  those  in  Eq.

(18).

In case 1 , the example can be written as

,02uuu xxt
20, xxu                               (23)

This equation can be solved by the variational iteration meth-

od [5]:

dtuuuuu
t

nnxxntnn )(
0

2
1                            (24)

If we begin with 2
0 ( , )u x t x , we  have the following first-

order approximate solution

txxdtxxu
t

)2()2( 42

0

42
1                      (25)
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2

2 210040
6
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2

xxtxxtu            (26)

So we get to

...210040
6

216
2

)2(, 84
3

62
2

42 xxtxxttxxtxu

(27)

So we get the same result as in (18) when 1 , and this is a

good agreement.

The next example shows that the solution of the fractional

generalized coupled MKDV and KDV equation depend on the

choice of the initial condition.

Example 3.  Consider the fractal derivative generalized cou-

pled MKDV and KDV equation

,02
xxxt euxcubuatD

where , , ,a b c e are all constants, with the initial condition

2,0 .u x x

We try to find series solutions of the form

0
, .n

n
n

u x t t u x

We obtain

xut
n

nuD n
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n
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0

''' .
n
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xxx utu

Comparing coefficients we obtain 2
0u x x and then re-

cursively

' ' ' '''
1

1 1
.

1 n n i j i j k n
i j n i j k n

n
u au b u u c u u u eu

n
The important question is : Does the series  converge? In gen-

eral, we expect that the series will not converge for any

,x t except for 0t . If 1 this is well known from the

Cauchy-Kovalevsky theory. The Cauchy-Kovalevsky theorem

gives conditions which guarantee the convergence of the se-

ries solution. In our example (with 1 ) these conditions are

not satisfied.  As an example consider the special case

t x xxxu u u u , with the initial condition 2,0u x x .

Then the recursive formula for nu is

' '''
11 .n i j n

i j n

n u u u u

Using this formula we find
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5
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One can show that nu x is a polynomial of degree 2n .

The coefficients are all 0 and the coefficient of 2nx is at

least  1.  If
0 0

,
m m

i i
i i

i i
p x a x q x b x are polynomi-

als with nonnegative coefficients we write i ip q if a b

for all i. It follows  that

.121 1
1

n
n nxnnun

Then

.32112112 4'''
12

n
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If 3 2n k we obtain after k steps

!313...3424 24 kukkk k

which implies

4 2

3 ! 3 2 !
4 2 !k

k k
u x

k
for 0x .

We obtain from this that the series diverges to  for every

0, 0x t  .

5. CONCLUSION
We suggest a fractional series expansion for fractional

calculus, two examples are given revealing that the solution

process is simple and accessible to non-mathematicians. Also

we show that the solution of the fractional generalized cou-

pled MKDV and KDV equation depend on the choice of the

initial condition, i.e. we showed that the fraction partial dif-

ferential equation 2 0t xxxD t a bu cu x eu with

the initial condition ,0u x f x has  no  solution  to

show that we use The Cauchy-Kovalevsky theorem.

6. DISCUSSION
The new method is valid for the case when the series is

convergent, it is generally difficult to prove the obtained se-

ries is convergent. To overcome the problem, we also suggest

an asymptotic fractional series expansion as follows

1,u x t t u x

1, ( )n
n

n
u x t c t u x

, ( )( )n
n m

n m
u x t c t u x

where iu and ic  (i=1,2,3...) are, respectively, unknown

function and constant  to be further determined approximate-

ly, we will discuss various cases in a forthcoming paper.
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